
 1

Alfred: WiFi-Enabled Automated Mixed
Drink Maker

Patrick Barron, CSE, Chris Wong, CSE, Ben Ivaldi, EE, and John Fouad, CSE

Abstract—College towns and major cities are often filled with
overpopulated bars. Alfred helps alleviate congestion while also
expediting the process of buying a drink by allowing customers to
order a drink through their mobile device. When a drink is ordered
by the customer, that drink choice is sent to a controller, which then
rotates a base holding 8 cups. The correct cup is rotated to a certain
position where a drink is dispensed with the correct proportions,
and then rotated again to the dispensing door. The customer will
receive a personal, four-digit identification code that he/she/they
will be able to enter at Alfred, and the dispensing door will vend
their drink to the customer. Alfred will pause its execution until the
drink is removed by the customer, then continue its execution.

I. INTRODUCTION

AVE you ever been at a bar and faced the struggle of waiting
in an overcrowded line to order a simple mixed-drink? Or

have you ever complained upon receiving the wrong drink at a
bar, or a drink that is too strong or not strong enough? Alfred will
allow users to order simple mixed-drinks from their mobile
device at the bar without having to wait for the bartender or
having to deal with pouring errors or receiving the wrong drink.

There have been inventions [11, 12] that are somewhat similar
to our design but none of those have the fully automated
functionality that Alfred contains. Also, similar designs that are
used in society today such as the “Coca-Cola’s Freestyle are
available on lease for $320 per month” which is very expensive
compared to our $500 dollar budget to make Alfred [1, 14]. Our
design will also save people time in crowded bars, and in today’s
society time is very valuable to people. Our design will allow
customers to spend more time with their friends, co-workers,
family etc. instead of wasting their time waiting to order a drink
which will increase their enjoyment of the bar.

Our requirements were developed based on the size of our
design. Alfred will be able to be placed on a bar and the bartender
will only have to insert cups of ice and bottles of the drink
choices into the machine periodically. Alfred will be powered by
plugging the system into a standard outlet. The

P. Barron from Bridgewater, MA (e-mail: pbarron@ umass.edu).
C. Wong from Norwood, MA (e-mail: cmwong@ umass.edu).
B. Ivaldi from Bridgewater, MA (e-mail: bivaldi@ umass.edu).
J. Fouad from Framingham, MA (e-mail: jfouad@ umass.edu).

requirements are also geared towards the customers as they
will have to wait limited time to receive a drink and can order
from their mobile device. Table I shows a list of specifications.

Table 1: List of requirements and specifications

Requirement Specification

Pour a mixed drink Correct portions and completed in
under 2 minutes

Multiple drink options Bartender can insert choice of
alcohol (750mL) and mixers into
dispensers. Choice of 4
different drinks

Minimizes spilling Spills less than 5% of drink

Online ordering User orders through mobile
website

Minimizes transaction
costs

Tab system for ordering

Drink served to
 correct customer

Serving door only opens when id
code is presented

Simultaneous pouring of
liquids

15.9” rotating base with 8 cups of
ice and 6 pumps

Failsafe: detects
positioning of base and
cups

Sensors to make sure cup is
removed before closing the
serving door. Sensor used to align
base

H

Figure 1: Alfred Front View

 2

A. Overview

For Alfred to function properly, it will need multiple motors
and controllers. The use of a Raspberry Pi was needed to get
Alfred to dispense beverages with the correct proportions. An
“order” button is pressed on our website, which then initiates
Alfred to begin creating a drink. Seven stepper motors are used
for the prototype: six for pumping the liquids and one for rotating
the base.

A serving door is implemented that has a laser and
photoresistor, one connected to each side – this lets the system
know when the cup is removed from the rotating base so that the
serving door can shut again and execution of the machine can
continue. There is also a laser and photoresistor for the rotating
base to make sure the base is calibrated in the correct position
i.e. under the correct pumps. The user is able to select a specific
drink that they want made, and Alfred will dispense the correct
drink with the correct proportions. The user will receive a
specific, four-digit identification number that they will be able to
enter at a keypad and receive their drink.

According to Figure 2, the power coming from the wall outlet
goes into the Raspberry Pi. From there, the Pi controls the motor
drivers which in turn control the stepper motors and servo motor
responsible for the rotating base, the pouring system, and the
delivery door. The Pi also communicates with the server which
handles requests from the user (mobile) interface, where users
can select the specific drink they would like to order. A code will
then be sent to the user which will allow them to retrieve their
drink. Once the delivery door opens, the photoresistor will let the
Pi know when the cup has been removed, allowing it to close.
Once a drink has been successfully retrieved by the user, Alfred
will continue making drinks and the process starts all over again.

Other alternatives we considered were Chinese peristaltic

pumps, but their flow rate was too slow [13]. We also looked
into mechanical shot fillers that perfectly pre-filled a shot, but
we would have to create another mechanical arm that pushes
the shot filler up.

Figure 3: Alfred back view

B. Rotating Base and Calibrating Laser + Photoresistor

The rotating base is a Lazy Susan that is screwed into a
wooden platform. A stepper motor driven by a motor driver
has a rubber wheel attached to the end of it, and when the
motor rotates, the wheel rotates [3, 4]. This wheel is placed on
the base. As a result, the base rotates synchronously with the
wheel but with a larger turn radius. Code written on the Pi is
controlling the rotating base to move to certain positions based

II. DESIGN

Figure 2: Block Diagram

Internet /WIFI

Internet /WIFI

Internet /WIFI

Internet /WIFI I R trip wire sensor

W ired connection

I R trip wire sensor

 3
on where we want a cup to be rotated to. Six specific drink
nozzles are located in certain areas around the base. The base
rotates a certain number of steps to a specific position to
receive the correct liquid. The calibrating laser and
photoresistor ensures that we know exactly where the base is
at all times [6]. The photoresistor is attached to the wooden
base, while the laser is suspended on top of it, facing directly
downwards at the photoresistor. There is a small rubber square
attached to the side of the rotating base. While Alfred is
operating, the photoresistor is continually receiving light from
the laser, but at some point while the base is rotating the rubber
square impedes the light hitting the resistor. At this moment,
we know that the base is aligned properly. This calibration is
to ensure that error does not accumulate from minute degree
inconsistencies in the rotation of the base/stepper motor. Once
the laser/photoresistor is lined up, we can continue rotation of
the base knowing the exact location of each cup. Calibration
is done after all eight cups have been taken and replaced with
eight new ones. Knowledge learned in Software Intensive
Engineering and Computer Systems Lab 1&2 allowed us to
control the Arduino, control I/O, and control the motors. We
will implement a test and check method that ensures the
correct functions of the laser and photoresistor, and that the
rotating base moves to the correct position via the shortest
path.

Figure 4: Alfred Bird’s Eye View

C. Serving Door and Laser + Photoresistor

A serving door is at the forefront of Alfred which opens up
once a customer enters their unique, four-digit identification
code. This door is in the shape of a trapezoidal prism with two
faces missing (see Figures 5 & 6). If one was looking directly at
the front face of the door, the bottom face and the back face will
be the ones missing. The door is rotated back 90 degrees with the
help of a servo motor, so that the front face is now on top. This
door rotates around the final cup position on the base, which will

allow the customer to reach in and grab their drink without being
able to access the other drinks in the machine. In the two side
faces of the door, there is another laser and photoresistor combo
that lets us know whether the completed cup has been removed
or not. The light from the laser is hitting the photoresistor while
the door is closed, but once it opens around a cup, the light is
refracted because of the liquid in the cup and is no longer hitting
the photoresistor. When the cup is removed, the laser hits the
photoresistor once again and the system knows that it is safe to
close the door. Alfred then continues execution. Knowledge
obtained from Software Intensive Engineering and Computer
Systems Lab 1&2 allows us to control the serving door. The
servo motor and the communication from the photoresistor will
be controlled by the Raspberry Pi. We changed the original
design of the door from a cube to a trapezoidal prism to
accommodate the minimal area we had to drop the door down
between the adjacent cups in the machine.

Figure 5: Serving Door

Figure 6: Serving Door with Keypad

 4
D. Pouring System

This subsystem of Alfred is responsible for the liquid
distribution. The main design goals of this system are speed,
accuracy, and affordability. In order to meet these goals we
used an open source 3D model of a peristaltic pump, designed
by silisand1,[2] that is driven by a Nema 17 stepper motor [3].
By doing so, we were able to utilize the unique properties of
these types of pumps, without paying the high market cost for
them. These allow for high precision liquid distribution,
without having liquid touch any mechanical or electrical
components.

Because these motors use a significant amount of power,
they each require a motor driver. The drivers chosen for these
motors was the TB6600 [4]. These drivers allow for simple
control signals and variable microstepping if needed, but we
found that the normal 200 step per rotation of the motors
themselves was sufficient.

In addition to the drivers, the pouring system also required
3.3V to 5V logic level converters for each driver. This is
because the drivers require 5V signals to operate, while the
Raspberry Pi I/O pins have a logic level high of 3.3V. Because
of this, we created a PCB of transistor amplifiers to increase
the signal voltage. The knowledge gained for Electronics 1
and 2 was sufficient in designing this, and the knowledge
gained from Computer Systems Lab 1 allowed for the digital
control of the motors.

After printing, building, and wiring our preliminary pumps,
we found that they did not have enough holding strength for
the amount of liquid required for our design without dripping.
Since dripping liquid into cups without command is not
desired, and could be a hazard, we needed to solve this. By
implementing code to run the pumps backwards after
distribution to the designated cup was complete, the tube line
is cleared and no liquid is available to drip into the cup.

Overall, the use of these printed pumps in conjunction with
the drivers have allowed for quick and accurate distribution of
liquid. In comparison to the initial Chinese peristaltic pumps
we bought, which had a flow rate of about 2.7 fl oz/min, our
printed pumps have a flow rate of about 12.5 fl oz/min, which
greatly improves our production time [13].

E. Mobile Interface and User Retrieve (Keypad)

The mobile interface for Alfred consists of a mobile website
that is accessible from a smartphone and enables the user to
create an account. Upon creation of the account the user will then
be able to place orders from a choice of 4 mixed drinks. From
there the users order will be sent through the control system and
initiate the drink making/pouring process. When the users drink
is complete, they will then receive a text message with a code
and can proceed to use their code to retrieve their drink.

The website uses HTML, JS, and CSS code for the user
interface side of the website. We used Django to implement the
website while coding in Python and linked our database and
Redis queue to an Amazon server and we will explain this more
in the next section. This code allows users to create an account

and link their account with the sites database so they can proceed
to order drinks. For the ordering itself, code is used to form a
selection menu where the user can click which drink they want
and then click a separate place order button. The website is very
user friendly as we added drop down menus for drink selection
and also enabled a passwords reset for user accounts that sends
them information about changing their password.

We use our gained knowledge from Software Intensive
Engineering with regards to coding in HTML and also making
websites user friendly. Going forward we will continue to learn
more JS and CSS to possibly improve the interface and also learn
more about working with the front-end and the database to store
the users account information. To design and test we checked our
code files on a web browser to see exactly how the site looks and
also we will test the ordering and account portions by going to
the site and placing orders and creating accounts respectively. To
analyze these results we made sure the website looks nice on the
mobile device and is capable of creating an account and then
placing a drink order.

Upon completion of the drink being poured, the user will
receive a personal identification code in the form of a text
message to then go and retrieve their drink. To use this block we
will start by sending the user a personal code that is a number
sent to their phone using Twilio and then the users will be able
to use that code to go up to Alfred and get their drink. We
implemented this with a simple USB Keypad where the users
enter their personal code and then press enter and their drink will
rotate to the door and be served to the customer. From there we
would have liked to advance our project to send the user a unique
QR code or bar code that they will be able to scan when they go
to retrieve their drink, but it remained to be too expensive for our
budget and we ran out of time.

F. Server and Client Block

The purpose of this block is to allow for communication
between each of the major components of Alfred to control the
system as a whole. For quick implementation and testing,
CPython was initially used to prototype the server and client [7].
However, with the scaling of the system to include multiple
processes, the CPython was transcribed to C since CPython’s
Global Interpreter Lock prevents threads with shared memory
from operating in parallel. The server and client use sockets and
TCP to communicate via the internet. However, to increase the
scalability of our design, we revamped the server to utilize a
Django server with an attached sqlite3 database and a Redis
queue for communication with the embedded client. The Django
framework allows for dynamic generation of the webpages that
we send to the client’s mobile device. The sqlite3 database stores
all of the information that we would like to keep, including user
information like username, hashed password, email, and phone
number; along with administrator details like beverages
available on each machine and drink receipts. The Redis queue
was used to interface sending messages between the server and
client. By using this technology, a bar using our product could
own multiple Alfred machines and the drink could be sent openly

 5
on the queue and pulled from any of the machines, allowing for
scalability. The server was hosted remotely with Amazon Web
Services and the client will run on a Raspberry Pi 3 Model B [9].
The Raspberry Pi’s Broadcom BCM2837 ARM Cortex-A53 is a
4-core, 2-way superscalar processor which should enable it with
the ability to run multiple process threads at the same time [8,
10]. This is useful since the complexity of maintaining
communication with the server and processing the information
to control the system will require a multithreaded solution for the
fastest performance.

The server and client block is very software heavy.
Therefore, there were many techniques that were used from
the more software-based classes. Data Structures and
Algorithms was useful for determining how the data should be
saved and processed in an efficient way. Introduction to
Computation and Cryptography aided in the selection of a
mathematical ring using modular arithmetic to provide a
mathematical model that the client could interpret. Computer
Systems Lab I and II helped with mapping the operating
system’s address space to the physical addresses that control
the general purpose input output pins on the Raspberry Pi’s
board. Computer Networks and the Internet assisted in
understanding and implementing the internet protocols.
Software Intensive Engineering helped with controlling
multiple thread resources so that there are no errors or
deadlock between the process threads. Computer Architecture
aided with choosing a processor that would fit our needs for
the project.

 While the prior knowledge that we had helped with this
block, we still needed to learn specific hardware-software
interactions for the Raspberry Pi. Also, we need to learn more
about developing a solution that could be ported to
industryscale tools. For example, hosting our server on
someone else’s server and using the Django framework for
dynamic webpage generation.

 To design and test this block, the software will have to be
run under realistic situations and workloads. The remote
server will need to serve webpages and communicate with a
reasonable number of clients. Also, the client will need to
handle a reasonable number of drink requests. In order to test
the performance, we will put the system under realistic to
heavy workloads and then measure the system’s response
time, utilization, processing time, and task completion time.
All of these metrics can be analyzed to see if the system is
performing better or worse. Lower response times, processing
times, and task completion times mean that the system is
performing better. Utilization is harder to analyze. While it
is preferred that the system is being utilized a lot, which could
mean that the system is working to the maximum potential,
having too much utilization could result in overworking the
system and causing rapid deterioration of the hardware, and it
could also mean that there is a bottleneck in the system.

G. PCB

The purpose of this block is to route all of the signals and
power to the correct components. We used the Eagle CAD

tools to generate the necessary Gerber and Excellon files to
send to the fabrication company. In addition, we used the
datasheet of NXP’s GTL2002 chip to properly design a system
on the PCB that was capable translating the 3.3V logic level
of the Raspberry Pi to the 5V logic level used by the motor
drivers.

While we did not develop a layout, since the fabrication of
the PCB required using computer aided design, our experience
using industry tools for CAD in our VLS design class. The
soldering skills that we learned during Electronics I helped in
assembling the board after it was fabricated.

Figure 7 (Above): PCB Schematic
& 8 (Next Page): PCB Layout

 6

III.

PROJECT MANAGEMENT

By following our deadlines and working together with clear

communication, each component was integrated to work in

harmony with the new implementation of the serving door,
feedback sensors, PCB, and personal identifier; also, the old
implementation was scaled and updated to support the
simultaneous pouring of 6 drinks at the same time without a
microcontroller or a local host.

The team works as a cohesive unit. Each team member has
a specialty that they can apply to specific subsystems, and
there is enough overlap in knowledge between each team
member, which promotes joint solutions to problems that
occur in any given subsystem.

John Fouad and Benjamin Ivaldi’s specialties regard
mechanical, power, sensor, and microcontroller devices.
Patrick Barron’s specialty lies in frontend development.
Christopher Wong’s specialty lies in backend development.

This collaboration is aided by the open communication
within the team. Often, there are daily discussions between
group members with weekly team meetings. In addition, there
are weekly meetings with our advisor scheduled to check our
progress and ensure that the project is progressing forwards.

IV. CONCLUSION

Since MDR, Alfred has been scaled-up and with the
completion of the pump system, implementation of the serving
door, and the addition of the ability of the website/server to
intake a personalized drink order.

One system preventing the system from being fully ready for
production is the full Twilio package. In a full production
model, we would have purchased a Twilio subscription;
however, since our model was only a prototype, we only had a
free trial that only allowed for texting to registered phones.

Figure 9: Gantt Chart

 7
Given more time and budget, we could have built another

system to display the full scalability of our system design,
having multiple machines pulling from the same queue to make
drinks for a high volume of customers. In addition, we could
have added a cup dispenser that would eliminate most of the
bartender’s responsibility for maintaining Alfred during
operation.

V. ACKNOWLEDGEMENTS

Special thanks to our advisor Professor Andras Moritz and our
evaluators Professor William Leonard and Professor Guangyu
Xu. Also thanks to Professor Christopher Hollot, Professor
Baird Soules, and Francis Caron.

REFERENCES

[1] Pullen, John Patrick. “5 Technologies Changing the Restaurant Industry.”
NBCNews.com, NBCUniversal News Group, 9 Sept. 2012,
www.nbcnews.com/id/48959179/ns/businesssmall_business/t/technologies
-changing-restaurantindustry/#.WjsylFWnHIV.

[2] Thingiverse.com. “Peristaltic Pump Improved for Nema 17 by Silisand.”
By Silisand - Thingiverse, www.thingiverse.com/thing:1134817.

[3] Clifford, Paul. “Stepper Motor Specifications, NEMA 17 1.8 Degree 200
Steps-per-Revolution Four-Phase Unipolar Permanent-Magnet
StepperMotor.” Find Controllers for Instrumentation and Automation at
the Mosaic Industries Site, Mosaic Industries, Inc.,
www.mosaicindustries.com/embedded-systems/microcontroller-
projects/steppermotors/specifications.

[4] “TB6600 Stepper Motor Driver SKU: DRI0043.” DFRobot, 28 June
2017,
www.dfrobot.com/wiki/index.php/TB6600_Stepper_Motor_Driver_SK
U:_DRI0043

[5] “Ks0002 Keyestudio Mega 2560 R3 Development Board.” Ks0002
Keyestudio Mega 2560 R3 Development Board - Keyestudio Wiki,
Keyestudio,
wiki.keyestudio.com/index.php/Ks0002_keyestudio_Mega_2560_R3_D
evelopment_Board.

[6] “IR Receiver Modules for Remote Control Systems.” Vishay,
www.vishay.com/docs/82491/tsop382.pdf.

[7] “Python/C API Reference Manual.” Python/C API Reference Manual -
Python 2.7.14 Documentation, Python, docs.python.org/2/capi/index.html.

[8] “ARM® Cortex® -A53 MPCore Processor.” ARM, docs-
apipeg.northeurope.cloudapp.azure.com/assets/ddi0500/g/DDI0500G_cort
e x_a53_trm.pdf.

[9] “Raspberry Pi Schematic.” RaspberryPi.org,
www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/R
aspberry-Pi-3B-V1.2-Schematics.pdf

[10] “ARM® Cortex® -A53 MPCore Processor.” ARM,
infocenter.arm.com/help/topic/com.arm.doc.ddi0500d/DDI0500D_corte
x_a53_r0p2_trm.pdf.

[11] Jamiep, and Instructables. “Build a Mobile Bar - BaR2D2.”
Instructables.com, Instructables, 8 Nov. 2017,
www.instructables.com/id/Build-A-Mobile-Bar-BaR2D2/.

[12] Lomas, Natasha. “Barobot Is A Hackable Cocktail Mixing Robot.”
TechCrunch, TechCrunch, 20 May 2014,
techcrunch.com/2014/05/20/barobot/.

[13] “Dosing Pump12V DC Peristaltic Liquid Pump Hose Pump Dosing Head
for Aquarium Lab Analytical Water (Green).” Amazon.com,
www.amazon.com/dp/B01HRPKBAE/ref=sspa_dk_detail_1?psc=1&pd
_rd_i=B01HRPKBAE&pd_rd_wg=HgS0y&pd_rd_r=H11V96JM16027
6XH0KWT&pd_rd_w=q4xRM.

[14] “Coca-Cola FreeStyle.” Coca-Cola, www.coca-colafreestyle.com/.

